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ABSTRACT 

With the rapid expansion of the Internet of Things (IoT), the demand for computational 
resources continues to soar, necessitating innovative solutions to address the needs of 
resource-constrained IoT users. Mobile edge computing (MEC) emerges as a promising 
remedy, mitigating the strain imposed by resource-intensive mobile applications. 
Concurrently, leveraging unmanned aerial vehicles (UAVs) as aerial platforms presents 
an enticing opportunity to enhance connectivity in wireless networks, owing to their on
demand deployment capabilities, high cruising altitudes, and maneuverability in three
dimensional space. This paper presents a comprehensive examination of UAV
aerial MEC, elucidating its advantages, challenges, and recent advancements across 
various domains. Topics explored include joint optimization of UAV trajectory, 
computation offloading, and resource allocation, UAV deployment strategies, task 
scheduling, load balancing, interplay with other technologies, and machine learning
driven optimizations. Additionally, the paper outlines key avenues
endeavors. 
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Introduction: 

 

In recent years, the explosive growth of the Internet of Things (IoT) has fueled an escalating demand for 
applications with diverse quality-of-service (QoS) requirements. Many of these applications, such as image/video 
processing, real-time online gaming, and virtual/augmented reality, demand substantial computational resources and 
exhibit sensitivity to latency. However, IoT users often encounter limitations in executing these applications due to 
constrained energy and computation resources. Addressing this challenge presents an unprecedented hurdle for IoT 
advancement. Enter mobile edge computing (MEC), heralded as a promising solution to this dilemma. MEC servers, 
strategically positioned at the edge of wireless networks, offer robust computing services to IoT users with minimal 
transmission and execution latency. By offloading computational tasks to MEC servers, IoT users can significantly 
diminish task execution latency and energy consumption, thereby expanding support for various computation-
intensive and latency-sensitive applications. 

 

However, traditional terrestrial infrastructure-based IoT and MEC networks face limitations in remote or disaster-
prone regions where deploying network facilities proves cost-inefficient or unfeasible. Fortunately, a novel 
paradigm known as UAV-enabled aerial MEC has recently emerged, garnering increasing attention from both 
industry and academia. Leveraging the inherent attributes of unmanned aerial vehicles (UAVs), including on-
demand deployment, low cost, controllable maneuverability, high cruising altitude, and line-of-sight (LoS) 
connectivity, UAVs serve as aerial MEC platforms suitable for a wide array of applications, spanning civilian to 
military operations. Aerial MEC functions as a complement to terrestrial MEC networks, particularly when ground 
base station (GBS)-embedded servers face overload or unavailability. Notably, the LoS connectivity and 
maneuverability of UAVs substantially reduce task offloading latency and energy consumption for MEC systems. 
Consequently, aerial MEC, integrating UAV communications and MEC, is poised as a win-win technology for next-
generation wireless networks, pivotal in delivering flexible and ubiquitous communication and computing support 
across diverse environments. 

 

Compared to conventional terrestrial infrastructure-based MEC systems, aerial MEC offers significant advantages 
derived from UAVs' unique features: 

 

1. Cost-effective and on-demand deployment: UAVs enable rapid, low-cost deployment of aerial MEC systems, 
catering to real-time demands and offering computation offloading opportunities in areas with sparse or disrupted 
network facilities. 

2. Coverage and computation capacity enhancement: UAVs' higher cruising altitudes allow effective coverage of 
large areas with fewer UAVs, while forming a flying ad hoc network (FANET) enhances computation capacity in 
hotspot areas, accommodating more users with high-quality computing services. 

3. Reliable LoS offloading links: UAVs' elevated cruising altitudes increase the likelihood of LoS links, providing 
more reliable wireless connectivity for task offloading and computation result downloading, thus meeting stringent 
MEC QoS requirements. 

4. Energy consumption and latency reduction: UAVs' controllable maneuverability introduces an additional design 
degree of freedom for aerial MEC. Trajectory optimization coupled with appropriate resource allocation strategies 
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significantly reduces offloading energy consumption and task latency, outperforming infrastructure-based MEC 
systems. 

 

 

 

 

 

Table 1: List of Abbreviations 

Abbreviations Full Name 
ABS Aerial Base Station 
ADMM Alternating Direction Method of Multipliers 
AI Artificial Intelligence 
ANN Artificial Neural Network 
B&B Branch and Bound 
BCD Block Coordinate Descent 
CTDE Centralized Training and Decentralized Execution 
DC Difference of Convex 
DDPG Deep Deterministic Policy-Gradient 
DNN Deep Neural Network 
DRL Deep Reinforcement Learning 
DVFS Dynamic Voltage and Frequency Scaling 
FANET Flying ad hoc Network 
GBS Ground Base Station 
IoT Internet of Things 
IRS Intelligent Reflecting Surface 
LEO Low Earth Orbit 
LoS Line-of-Sight 
MADDPG Multi-Agent DDPG 
MBS Macro Base Station 
MDP Markov Decision Process 
MEC Mobile Edge Computing 
ML Machine Learning 
NLoS Non-Line-of-Sight 
NOMA Non-Orthogonal Multiple Access 
OMA Orthogonal Multiple Access 
PLS Physical-Layer Security 
RL Reinforcement Learning 
SADDPG Single-Agent DDPG 
SCA Sequential Convex Approximation 
SDN Software Defined Networking 
SWaP Size, Weight, and Power 
UAV Unmanned Aerial Vehicle 
WPT Wireless Power Transfer 

 

Due to the compelling attributes mentioned earlier, significant research endeavors have focused on harnessing the 
advantages of UAV-enabled aerial MEC. Despite being constrained by stringent size, weight, and power (SWaP) 
limitations, UAVs exhibit diversified operational altitudes, coverage areas, computation capacities, and endurance 
levels. Nevertheless, owing to the shared characteristics of different UAV types in communication and computing 
aspects, aerial MEC can be explored in a unified manner. Performance optimization, considering various constraints, 
remains crucial across specific application scenarios. Key optimization considerations include trajectory design, 
resource allocation, optimal UAV deployment, cooperative aerial computing mechanisms, among others. 
Additionally, research also delves into the interplay between aerial MEC and advanced technologies like wireless 
power transfer (WPT), physical-layer security (PLS), and reconfigurable intelligent surfaces (RIS) to further 
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enhance performance. Moreover, alongside traditional optimization tools such as convex optimization and game 
theory, machine learning (ML)-driven optimization has seen widespread application in addressing complex control 
and resource allocation challenges within dynamic aerial MEC environments. These combined efforts have 
effectively advanced the application of UAV-enabled aerial MEC across critical domains. 

 

Existing Surveys and Tutorials: 

Recent years have witnessed the publication of numerous surveys and tutorials related to UAV communications. For 
instance, an exhaustive survey categorizing various fifth-generation (5G) and beyond 5G (B5G) techniques based on 
UAV platforms into domains like physical layer, network layer, and joint communication, computing, and caching 
has been presented. Similarly, from a game theory perspective, recent progress in modeling and analyzing UAV-
aided communication networks has been surveyed, along with the introduction of advanced distributed interference 
management schemes for large-scale UAV-assisted networks. Furthermore, tutorial overviews of recent advances in 
UAV-assisted communications and cellular-connected UAVs have been provided, shedding light on UAV 
integration into networks and their role as new aerial communication platforms and users, respectively. 
Comprehensive tutorials on the potential benefits and applications of UAVs in wireless communications have also 
been presented, thoroughly investigating fundamental tradeoffs, analytical frameworks, and mathematical tools for 
UAV-enabled communication networks. Additionally, recent research efforts on the integration of UAVs with 
cellular networks, exploiting advanced techniques such as RIS, short packet transmission, joint communication, 
radar sensing, and edge intelligence, have been outlined to cater to the diverse service requirements of next-
generation wireless networks. 

 

Concurrently, representative surveys related to MEC systems have also been conducted. These surveys focused on 
various aspects such as joint radio-and-computational resource management in MEC systems, MEC orchestration, 
reference architecture, main deployment scenarios, exploitation of MEC for IoT realization and their synergies, and 
the definition, advantages, architectures, and potential applications of MEC. Discussions on security and privacy 
issues and potential solutions, as well as challenges posed by MEC over limited wireless resources, have been 
addressed. Notably, despite existing surveys and tutorials solely focusing on UAV communications or MEC 
systems, a comprehensive survey centering on the integration of UAV communications and MEC systems is 
lacking. Therefore, this paper aims to bridge this gap by presenting an in-depth survey of aerial MEC, envisioning a 
comprehensive computing infrastructure for future wireless networks. 

 

Paper Contributions and Organization: 

As discussed earlier, while UAV-enabled aerial MEC holds promise in providing ubiquitous and reliable MEC 
services in 5G-and-beyond networks, its successful realization is still in its nascent stage, demanding continuous 
efforts from both academic and industry communities. Hence, there is a pressing need to review current studies on 
UAV-enabled aerial MEC. Motivated by this imperative, our aim is to present a comprehensive survey of recent 
research advances in this domain, categorized by different topics including joint optimization of computation 
offloading, resource allocation, and trajectory design, UAV deployment, task scheduling, load balancing, interplay 
with other technologies, and ML-driven optimization for aerial MEC. Moreover, we also offer enlightening 
guidance for future research directions. The rest of this survey is organized as follows: an overview of aerial MEC is 
provided in Sec. II, followed by a survey on joint optimization of UAV trajectory, computation offloading, and 
resource allocation in Sec. III. Then, UAV deployment and load balancing issues are presented in Sec. IV. In Sec. V, 
the interplay between aerial MEC and other technologies is introduced, followed by a review of state-of-the-art 
studies dedicated to ML-driven optimization in Sec. VI. Finally, a range of open problems for future research in 
UAV-enabled aerial MEC is summarized in Sec. VII, followed by conclusions in Sec. VIII. The organization of this 
survey is illustrated in Fig. 1, and for the ease of reading, a list of abbreviations is provided in Table 1. 
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Network Architecture 

UAVs are categorized based on various factors such as size, weight, wing configuration, flying duration, and 
altitude, leading to distinctions between l
high altitude platforms (HAPs) versus low altitude platforms (LAPs) [22, 23]. In the context of aerial MEC, 
different types of UAVs can be deployed to suit diverse application scenarios. 
small aircraft possess higher flying speeds and longer travel distances, enabling them to carry larger payloads 
compared to rotary-wing UAVs. However, fixed
airborne, making them suitable for covering expansive areas to deliver computing services. Conversely, rotary
UAVs like quadrotor drones have the capability to hover stationary over specific locations. Despite their relatively 
smaller payloads due to size and weight limitations, rotary
landing without the need for runways or launchers, facilitating rapid and flexible deployment. HAPs typically 
operate at altitudes above 17km and are designed for long
to applications requiring extensive coverage and endurance.

 

 

 

An integrated network architecture for aerial MEC is depicted in Figure 2. In regions where network facilities are 
sparse or even non-existent, UAVs can function as aerial base stations (ABSs) equipped with MEC servers, 
delivering computing services to mobile users. Additionally, in situations where infrastructure
predefined regions may struggle to adapt to fluctuating service de
areas to address temporary or unexpected needs. Moreover, UAVs can serve as relays to facilitate task offloading 
from users to more robust remote MEC servers, potentially spanning two or more hops. Leveragin
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adjust positions for optimal channel conditions, UAV relays offer improved performance compared to conventional 
static relays. However, due to the limited computation capacity of individual UAVs, collaboration among multiple 
UAVs is essential to expand coverage areas and enhance computation capabilities. Cooperative computing 
mechanisms necessitate sophisticated design to ensure effective coordination. Furthermore, forming a swarm of 
UAVs into a Flying Ad-hoc Network (FANET) via inter-UAV links enables efficient task offloading, where smaller 
UAVs generate task bits forwarded to a head UAV with ample computing resources for real-time processing. 
Additionally, tasks offloaded from ground users can be redistributed among multiple UAVs within the FANET. 
Integrating Low Altitude Platforms (LAPs) with High Altitude Platforms (HAPs) and terrestrial infrastructures 
creates a comprehensive information network. HAPs, with their global perspective, provide broad coverage and 
computing services, while LAPs supplement terrestrial MEC networks with additional computational resources to 
ensure stringent Quality of Service (QoS) requirements. 

 

Potential Challenges 

 

The dynamic and intricate nature of UAV communications and MEC systems introduces complexity into the design 
and optimization of aerial MEC. Despite the evident advantages over terrestrial MEC systems, several pressing 
technical challenges demand attention: 

 

- Real-time trajectory design: The maneuverability of UAVs introduces a new dimension for aerial MEC design. 
Crafting real-time trajectories enables better channel conditions for task offloading and result downloading. 
However, the finite onboard energy of UAVs, coupled with the energy consumption during flight, poses a 
significant challenge. Moreover, trajectory design must adhere to UAV constraints such as wing configuration, 
maximum speed, and safe distances between multiple UAVs. Balancing improved channels with energy 
conservation remains a daunting task, especially considering the interplay with computation offloading and resource 
allocation strategies. 

 

- Energy-efficient and latency-aware resource allocation: Efficient resource allocation is pivotal for realizing the 
benefits of aerial MEC. Yet, the multitude of parameters linked to both UAVs and MEC often leads to non-convex 
optimization problems with high complexity. Addressing the fundamental tradeoff between energy consumption and 
task latency presents a formidable challenge. Achieving optimal solutions that effectively manage this tradeoff is 
crucial for aerial MEC deployment. 

 

- Optimal UAV deployment: Enhancing coverage and computation capacity necessitates optimizing UAV 
deployment, encompassing both 3D placement and the number of UAVs. Altitude optimization is crucial to balance 
line-of-sight (LoS) connectivity and path loss, considering the increased transmission distance at higher altitudes. 
Additionally, determining horizontal deployment positions and the minimum number of UAVs for full coverage 
while meeting service requirements poses a challenging optimization problem. 

 

- Security protection and privacy-preserving: The wireless nature of aerial MEC exposes it to security threats, 
risking data security and privacy. Small UAVs, with their high availability and ease of deployment, are susceptible 
to attacks from malicious or rogue UAVs, a threat unique to aerial MEC. Developing robust security mechanisms to 
safeguard against such threats is imperative. 
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- Advanced optimization tools: The complexity of aerial MEC optimization often results in high-dimensional 
problems. Traditional approaches like convex optimization, game theory, and heuristic algorithms require expert 
knowledge of the environment. In dynamic environments where obtaining expert knowledge is challenging, 
Machine Learning (ML) tools with adaptive modeling and intelligent learning excel. However, ensuring the 
optimality of ML approaches remains a challenge, necessitating the identification of diverse scenarios and 
appropriate selection of optimization tools for aerial MEC. 

 

Joint Optimization of UAV Trajectory, Computation Offloading, and Resource Allocation 

 

Efficient and low-latency MEC relies on adept computation offloading and resource allocation strategies. In the 
realm of UAV-enabled aerial MEC, the maneuverability of UAVs, despite strict size, weight, and power (SWaP) 
constraints, presents an additional degree of freedom for enhancing performance. This section delves into the 
research advancements regarding the joint optimization of UAV trajectory, computation offloading, and resource 
allocation, categorized by three pivotal UAV roles: aerial base stations (ABSs), mobile users, and relays. 

 

When UAVs Serve as ABSs 

 

Equipped with miniaturized MEC servers, UAVs can function as ABSs, furnishing ground users with prompt 
communication and edge computing services. The line-of-sight (LoS) links between UAVs and ground users in 
aerial MEC offer highly reliable air-ground transmissions. However, the amalgamation of UAVs and MEC 
introduces network heterogeneity and intricate coupling between trajectory design and resource allocation. 
Consequently, joint optimization of UAV trajectory, computation offloading, and resource allocation strategies 
becomes imperative. 

 

1) Optimization for the Single-UAV Case: Initial exploration of aerial MEC optimization often involves single-
UAV scenarios to glean design insights. For instance, in [27], a lone UAV with an MEC server aids ground users in 
completing computation tasks, assuming the UAV remains stationary throughout the mission. Energy consumption 
is minimized by jointly optimizing UAV position, time slot allocation, and computation task partition. Despite the 
tractable nature of this approach, exploiting UAV mobility remains a challenge, especially in large-scale multi-user 
scenarios due to closely coupled optimization variables and highly non-convex problem formulations. 

 

Decomposing the original problems into subproblems is a common strategy to mitigate computational complexity 
[28]. For example, M. Hua et al. [29] decompose the optimization problem into subproblems for resource allocation 
and UAV trajectory design. Various optimization methods, including ADMM, Lagrange dual method, and linear 
programming, are employed to tackle these subproblems [30, 31, 32]. 

 

Notably, existing literature often focuses on user-centric energy consumption optimization, neglecting UAV energy 
considerations. Optimizing UAV energy consumption is crucial for prolonging service time, given limited onboard 
energy and substantial energy consumption for computing and propulsion [33, 34]. Efforts such as [35, 36] address 
this gap by jointly optimizing task offloading decisions, resource allocation mechanisms, and UAV trajectories, 
effectively reducing UAV energy consumption. Additionally, the latency problem garners attention, with algorithms 
proposed to minimize maximum delay among users [37]. A balance between task completion time and UAV energy 
consumption is crucial, addressed through Pareto-optimal solutions [38]. 
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As depicted in Fig. 3, reducing the altitude can positively affect overall energy consumption due to decreased path 
loss in LoS conditions. However, below a certain altitude, obstacles may worsen communication links for some 
users, leading to increased system energy consumption. Hence, there exists a fundamental tradeoff between LoS link 
probability and path loss when designing the UAV's 3D trajectory. Addressing this, Mei et al. [41] endeavor to 
jointly optimize resource allocation and UAV trajectory in 3D
They employ the quadratically constrained quadratic program (QCQP) and Block Coordinate Descent (BCD) 
algorithm to optimize the trajectory of rotary
Simulation results demonstrate that the UAV's flying height dynamically adjusts to conserve service and propulsion 
energy while meeting user requirements.

 

Moreover, the choice of multiple access schemes is pivotal in aerial MEC optimization. Whil
like Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), and Orthogonal 

), Journal of Artificial Intelligence General Science (JAIGS)  

 

In much of the existing literature, UAV flying height is often assumed to be constant. However, in reality, UAVs 
have the freedom to navigate in 3D space, and their altitude significantly influences air-ground channel gains, 

Sight (LoS) links and path loss [39]. Therefore, Costanzo et al. [40] delve into 
the impact of UAV height in aerial MEC and propose a stochastic approximation method for selecting the UAV's 

As depicted in Fig. 3, reducing the altitude can positively affect overall energy consumption due to decreased path 
loss in LoS conditions. However, below a certain altitude, obstacles may worsen communication links for some 

tem energy consumption. Hence, there exists a fundamental tradeoff between LoS link 
probability and path loss when designing the UAV's 3D trajectory. Addressing this, Mei et al. [41] endeavor to 
jointly optimize resource allocation and UAV trajectory in 3D space to minimize overall UAV energy consumption. 
They employ the quadratically constrained quadratic program (QCQP) and Block Coordinate Descent (BCD) 
algorithm to optimize the trajectory of rotary-wing/fixed-wing UAVs in both vertical and horizontal dim
Simulation results demonstrate that the UAV's flying height dynamically adjusts to conserve service and propulsion 
energy while meeting user requirements. 

Moreover, the choice of multiple access schemes is pivotal in aerial MEC optimization. While orthogonal schemes 
like Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), and Orthogonal 

JAIGS)  64 

is often assumed to be constant. However, in reality, UAVs 
ground channel gains, 

, Costanzo et al. [40] delve into 
the impact of UAV height in aerial MEC and propose a stochastic approximation method for selecting the UAV's 

As depicted in Fig. 3, reducing the altitude can positively affect overall energy consumption due to decreased path 
loss in LoS conditions. However, below a certain altitude, obstacles may worsen communication links for some 

tem energy consumption. Hence, there exists a fundamental tradeoff between LoS link 
probability and path loss when designing the UAV's 3D trajectory. Addressing this, Mei et al. [41] endeavor to 

space to minimize overall UAV energy consumption. 
They employ the quadratically constrained quadratic program (QCQP) and Block Coordinate Descent (BCD) 

wing UAVs in both vertical and horizontal dimensions. 
Simulation results demonstrate that the UAV's flying height dynamically adjusts to conserve service and propulsion 

e orthogonal schemes 
like Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), and Orthogonal 



65     Musaab Mohammad Alhaddad

 
Frequency Division Multiple Access (OFDMA) are common, Non
emerged to accommodate massive connec
NOMA enables multiple users to access the UAV and offload tasks simultaneously and at the same frequency, 
mitigating inter-user interference through Successive Interference Cancella
explore NOMA's application in aerial MEC, where users offload task bits to the UAV in the uplink simultaneously 
via NOMA. They minimize maximum energy consumption among users by jointly optimizing UAV trajectory, tas
data, and computing resource allocation. Similarly, NOMA
consumption minimization in [47]. 

 

 

Simulation results demonstrate the superior energy efficiency of NOMA compared to orthogonal multiple access 
(OMA). Jeong et al. [48] minimize total user energy consumption under both NOMA and OMA schemes, 
considering task tolerance latency and UAV energy budget constraints, using the Successive Convex Approximation 
(SCA) technique. Similarly, in [49], the joint o
minimizes the weighted sum energy consumption of UAVs and users, exploring both OMA and NOMA schemes 
with the Block Coordinate Descent (BCD) method. Li et al. [50] focus on enhancing user ex
maximizing UAV energy efficiency for OMA and NOMA schemes, jointly optimizing UAV trajectory, user 
transmit power, and computation load allocation using the Dinkelbach algorithm and SCA technique to solve the 
non-convex fractional programming. 
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via NOMA. They minimize maximum energy consumption among users by jointly optimizing UAV trajectory, task 

based aerial MEC systems are studied for total energy 

 

Simulation results demonstrate the superior energy efficiency of NOMA compared to orthogonal multiple access 
OMA). Jeong et al. [48] minimize total user energy consumption under both NOMA and OMA schemes, 

considering task tolerance latency and UAV energy budget constraints, using the Successive Convex Approximation 
ptimization of UAV trajectory and computation resource allocation 

minimizes the weighted sum energy consumption of UAVs and users, exploring both OMA and NOMA schemes 
with the Block Coordinate Descent (BCD) method. Li et al. [50] focus on enhancing user experience while 
maximizing UAV energy efficiency for OMA and NOMA schemes, jointly optimizing UAV trajectory, user 
transmit power, and computation load allocation using the Dinkelbach algorithm and SCA technique to solve the 



ISSN:3006-4023 (Online), Journal of Artificial Intelligence General Science (JAIGS)  66 

A summary of contributions to joint optimization for the single-UAV case when UAVs serve as ABSs is provided in 
Table 2. 

 

For the multi-UAV case in aerial MEC, relying on a single UAV for edge computing presents limitations due to 
onboard energy storage and computing capacity constraints, as well as limited coverage area. To address these, 
multiple UAVs are deployed as ABSs with MEC servers, offering more robust and extensive edge computing 
services [52]. However, leveraging multiple UAVs introduces challenges. Users must decide both task offloading 
amounts and which UAV to offload to, known as the user association problem. Additionally, joint optimization of 
user association, UAV trajectories, and resource allocation becomes more complex than single-UAV aerial MEC 
systems due to increased variables and closer coupling. Furthermore, ensuring safe distances among multiple UAVs 
to avoid collisions complicates trajectory design. 

Recently, efforts have been made to address the challenges faced by multi-UAV aerial MEC systems. Various 
solutions have been proposed, targeting user association among other issues. Zhang et al. [54] aim to maximize 
computation efficiency in a multi-UAV-enabled aerial MEC system. They jointly optimize user association, CPU 
frequency allocation, power and spectrum resources, and trajectory scheduling of multiple UAVs using an iterative 
algorithm with a double-loop structure. User association is formulated as a standard integer linear programming 
(ILP) problem, which can be solved using algorithms like branch-and-bound (B&B) and cutting plane methods. 
Diao et al. [55], on the other hand, propose a greedy-based offloading strategy variable rounding (GOSVR) 
algorithm to achieve a near-optimal solution for user association. They then optimize UAV trajectories to minimize 
the weighted sum of maximum energy consumption among users and UAVs. In [56], the sum power minimization 
problem is decomposed into subproblems, and the user association subproblem is approximated as a sequence of 
weighted l0-norm minimizations. A compressive sensing-based algorithm is proposed to obtain the closed-form 
solution. However, note that the location planning of UAVs in [56] is obtained through one-dimensional searching 
without considering UAV mobility. 

 

In another approach, trajectory design and resource allocation for NOMA-based multi-UAV aerial MEC are jointly 
optimized in [57]. The problem is decomposed into two subproblems, and an efficient iterative algorithm is 
proposed to minimize the weighted sum energy consumption of users and UAVs. Each iteration solves the resource 
allocation subproblem using Successive Convex Approximation (SCA) given UAV trajectories, and the trajectory 
planning subproblem for multiple UAVs is addressed via quadratic approximation based on resource allocation 
schemes. Building on this, Qin et al. [58] focus on the multi-access feature in multi-UAV aerial MEC systems and 
propose a joint trajectory design and resource allocation algorithm. With multiple radio access, each user can offload 
task bits to multiple UAVs simultaneously for parallel computing. The proposed algorithm outperforms fixed 
trajectory, fixed bandwidth allocation, and single access schemes. 

 

It's important to note that the literature discussed assumes users in multi-UAV aerial MEC systems act rationally, 
making offloading decisions in a risk-neutral manner to maximize their perceived utility, like minimizing energy 
consumption [56] or maximizing computation efficiency [54]. However, in reality, users tend to exhibit risk-seeking 
or loss-averse behavior due to uncertainties in computing resource availability [59, 60, 61]. Specifically, as the 
energy available for computing decreases over time due to UAV energy consumption during flight, uncertainty 
arises regarding the UAV's ability to process offloaded task bits. Taking both risk-aware user behavior and UAV 
computing resource availability into account, Apostolopoulos et al. [53] aim to maximize user satisfaction utility, 
introducing a linear probability of failure function to describe UAV computing resource availability. Simulation 
results demonstrate superior performance compared to alternative approaches. Moreover, users' physical and risk-
aware characteristics significantly influence their task offloading decisions. UAVs with higher computation 
capability and more energy storage receive more task bits from users. 

 



67     Musaab Mohammad Alhaddad

 
Despite extensive optimization efforts for multi
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game is used to analyze UAV interactions, and a decentralized strategic offloading algorithm is proposed to 
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offload partial task data to nearby UAV helpers with more powerful computing abilities. A two-stage resource 
allocation scheme aims to minimize total energy consumption using convex optimization and stochastic learning 

ao et al. [67] investigate cooperation between two types of UAVs, scout UAVs (SU) 
theoretic approach addresses computation offloading 
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In addition to energy consumption optimization, R. Chen et al. [68] focus on delay minimization in cooperative 
UAV swarm-assisted MEC systems. UAVs in a swarm are grouped into coalitions consisting of a leader and 
multiple members. Each member UAV must decide the offloading ratio and transmission channels to the leader 
UAV to minimize computing delay. An exact potential game is formulated to achieve Nash equilibrium. 

 

Considering trajectory design in multi-UAV aerial MEC systems, collision avoidance is crucial in real 
environments. UAVs need to maintain a safe distance from no-fly zones or obstacles [54] and from each other to 
prevent collisions [55]. In [51], multiple UAVs are assumed to fly at different fixed altitudes to avoid interference. 
Advancing further, a conflict elimination strategy in [69] ensures minimum distances among potential conflict 
UAVs adhere to safety constraints. Additionally, [70] proposes a reinforcement learning approach for UAV path 
design, incorporating collision risk into the reward function to prevent collisions. 

A summary of contributions to the joint optimization for multi-UAV cases, where UAVs act as ABSs, is presented 
in Table 3. 

 

When UAVs Serve as Mobile Users 

 

UAVs offer advantages such as low cost, on-demand deployment, and high maneuverability, enabling them to serve 
as mobile users for critical tasks in various scenarios, including target tracking, emergency rescue, smart delivery, 
and mapping. However, due to energy and computation capacity limitations, UAVs may struggle to process 
collected data in real time. To overcome this challenge, computation tasks can be offloaded to powerful MEC 
servers deployed at GBSs or other BS entities. Unlike ground users, UAVs can adjust their positions in 3D space to 
optimize channel conditions for task data offloading. 

 

In scenarios where UAVs serve as mobile users, [78] employs fixed-wing UAVs to transmit collected data to ground 
MEC servers for real-time processing. Optimizing the weighted sum energy consumption of the UAV and MEC 
server involves joint optimization of UAV trajectory, task assignment, and CPU computational speed, considering 
constraints such as UAV and server computation capacities, UAV velocity, and acceleration. Interestingly, the 
transmit power of fixed-wing UAVs significantly influences trajectory and energy consumption. A smaller transmit 
power results in trajectories resembling an "8," requiring continuous acceleration and deceleration to hover closer to 
ground MEC servers, thus consuming more energy. Conversely, higher transmit power enables task completion even 
with worse channels, resulting in trajectories with lower average acceleration and energy consumption savings. 
Similarly, [25] explores aerial MEC systems where multiple UAVs act as users associated with an MEC server for 
computation offloading. Considering access schemes like TDMA, OFDMA, one-by-one access, and NOMA, total 
UAV energy consumption is minimized using SCA. NOMA demonstrates superior energy consumption 
performance over OMA, yet superposition of all UAVs on the same resource block can cause severe decoding delay 
and co-channel interference. Addressing this, a multi-UAV grouping method in [79] reduces the number of UAVs 
on the same resource block. Subsequently, optimization of UAV transmit power and BS computation resources, 
based on KKT conditions, minimizes the sum of energy consumption related to communication and computing. 

 

Although lower energy consumption benefits UAVs with limited battery storage, QoS, particularly transmission and 
execution delays, is crucial for UAVs performing critical tasks as users. [81] proposes an energy-efficient offloading 
scheme for UAVs based on transmission and execution delay. A matching scheme selects optimal partners between 
UAVs and edge nodes, and offloading is modeled as a bargaining game to maximize utility. 
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A balance is achieved by employing Lyapunov optimization, leading to the discovery of the optimal task scheduling 
and resource allocation strategy. 

 

In addition to MEC servers in close proximity to UAVs, satellites or other BSs equipped with MEC servers can offer 
additional offloading opportunities for UAVs. For example, in [84], a fleet of small UAVs on an exploration mission 
can offload tasks to a nearby WiFi BS or a more powerful cellular-connected MEC server. A non-cooperative game 
theory-based algorithm addresses UAVs' offloading decisions, resulting in significant energy savings for 
computation offloading with the appropriate communication medium. Similarly, [85] utilizes UAVs to detect wind 
turbines, after which both ground MEC servers and satellites can provide edge computing services for the UAVs. To 
minimize completion time, UAV trajectories and computation strategies are jointly optimized. It is demonstrated 
that the proposed ground-satellite-integrated offloading scheme achieves lower completion time than the scheme 
without satellites, highlighting the advantages of introducing satellites for offloading opportunities. 

 

A summary of contributions to joint optimization when UAVs serve as mobile users is provided in Table 4. 

 

When UAVs Serve as Relays 

 

For users with limited local resources located in remote areas or with direct links to BSs blocked by obstacles, 
UAVs can serve as relays to forward computation-intensive tasks to more powerful remote MEC servers via two or 
more hops. An illustrative network architecture when UAVs serve as relays is depicted in Fig. 5. Compared to 
conventional static relays, UAV relays offer opportunities for system performance enhancement as UAVs can adjust 
their positions for better channel conditions. However, the participation of UAV relays makes UAV trajectory 
design more complex, and optimization of computation offloading and resource allocation is essential to fully utilize 
the potential of UAV relays in aerial MEC. 

 

1) UAV Relay without Computation Capacity: In [87], as ground channels from IoT nodes to the data center suffer 
severe fading, UAVs serve as relays to forward information from IoT nodes to the data center controlled by the fog 
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computing BS. To maximize IoT nodes' throughput, subcarrier allocation, transmit power of IoT nodes and UAV, as 
well as UAV trajectory are jointly optimized. Simulation results show that throughput of IoT nodes under mobile 
UAV relay is higher than that under static UAV relay. In [88], with UAVs acting as mobile relays between users and 
the BS, UAV trajectory, power allocation, and user scheduling scheme are jointly optimized to minimize the total 
latency of all users. 

UAV Deployment, Task Scheduling, and Load Balancing 

 

With UAVs increasingly used in civilian and military settings, effective UAV deployment for maximizing coverage 
and capacity has become a challenging aspect of aerial MEC [99]. While significant work has been devoted to UAV 
trajectory planning to offer high-quality edge computing services, existing approaches often assume UAV 
deployment within predefined regions with fixed user locations. However, in practice, user distribution varies over 
time. For instance, as shown in Fig. 1 of [100], service requests in places like Happy Valley theme park in Beijing 
exhibit highly nonuniform distributions, forming hot-spot areas at different locations and times throughout the day. 
Consequently, deploying UAVs within predefined regions may not adequately address the dynamic distribution of 
users and service demands. Moreover, to conserve energy and simplify network management, the number of 
deployed UAVs should be minimized while ensuring all tasks meet latency requirements [101]. However, 
determining the minimum number of UAVs needed for full coverage while meeting task requirements cannot be 
solely achieved through trajectory planning. To tackle these challenges, deployment parameters of UAVs, including 
horizontal position, flying height, and the number of UAVs, need to be jointly optimized. 

 

UAV Deployment in 2D Space 

 

Multi-UAV deployment optimization is generally regarded as an NP-hard problem [102]. Differential Evolution 
(DE) is considered an effective method to address this problem and find satisfactory solutions [103]. DE mimics 
biological evolution, retaining populations that adapt to environments through iterations. In [103], a DE-based multi-
UAV deployment mechanism is proposed to obtain near-optimal 2D UAV positions iteratively. This algorithm 
ensures load balancing of UAVs while satisfying coverage constraints and IoT nodes' Quality of Service (QoS) 
requirements. Additionally, a Deep Reinforcement Learning (DRL) algorithm is devised for task scheduling to 
enhance task execution efficiency. Similarly, DE-based algorithms are proposed in [101, 104] to optimize UAV 
deployment with objectives such as minimizing system energy consumption [101] and load variance of UAVs [104]. 
The effectiveness of DE-based algorithms in reducing energy consumption and the number of deployed UAVs is 
demonstrated in [101]. 

 

To address unexpected or temporary high traffic loads in hot-spot areas, H. El-Sayed et al. [105] explore UAV 
deployment in vehicular networks, where UAVs are dynamically deployed as mobile edges. Using Bee Swarm 
Intelligence (BSI), a UAV deployment approach is proposed to achieve full network coverage without additional 
overhead or delay. Similarly, on-demand UAV deployment for hot-spot areas is studied in [100], aiming to 
maximize the number of served tasks. A variable-sized bin-packing problem with geographic constraints is 
formulated to optimize hover locations of UAV-mounted edge servers among dynamic hot-spot areas. Since the bin-
packing problem is NP-hard, an online dispatching scheme is proposed to find UAV hover locations, and a greedy 
algorithm is developed to assign tasks to UAV-mounted edge servers. Real-world experiments demonstrate that this 
UAV dispatching scheme can timely serve more users in hot-spot areas while achieving high resource utilization. 
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In contrast, X. Wang et al. [106] focus on the economic viability of UAV-provided services (UPS) in hot-spot areas. 
They find that if a UAV encounters multiple hot spots, it should deploy to serve a single hotspot, considering 
optimal pricing and energy allocation for each hotspot. For cases involving multiple UAVs, a counterintuitive 
observation is made: with UAVs deploying to different hot spots, more UAVs may be deployed to the second-best 
hotspot instead of the expected first-best one for profit-maximizing purposes. 

2D/3D 
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Refs. Optimization Objective Optimization Variables Optimization Methods 

 
 
 
 
 
 

2D 

[100] Number of served tasks UAV positions and task assignment 
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Interplay between Aerial MEC and Other Technologies 

 

WPT-Integrated Aerial MEC 

 

Wireless Power Transfer (WPT) has emerged as a promising technology for providing stable and controllable 
energy supplies to users equipped with Energy Harvesting (EH) modules, extending their operational lifetimes [116, 
117]. In the context of aerial Mobile Edge Computing (MEC), as depicted in Fig. 6, WPT-integrated systems have 
garnered increasing attention from both industry and academia. For instance, in [118], a single UAV integrates a 
Radio-Frequency (RF) energy transmitter and an MEC server to offer wireless energy supplies and computing 
services to ground users. An alternative algorithm, based on Successive Convex Approximation (SCA) and 
Lagrange duality, is employed to minimize the UAV's energy consumption. Subsequently, in [119], the 
maximization of computation rate in WPT-integrated aerial MEC is explored under energy-harvesting and UAV 
speed constraints. Simulation results show that increased UAV transmit power leads to a rise in the weighted sum of 
computation bits for all users, enabling better energy harvesting and task offloading. Additionally, [120] introduces 
a new TDMA-based workflow model for wirelessly-powered aerial MEC systems, optimizing user association, 
computing resource allocation, UAV hovering time, wireless powering duration, and service sequence to minimize 
UAV energy consumption. 

 

Given the broadcast nature of wireless links, UAV transmit power can charge not only active users but also idle ones 
to prevent power wastage. To address this, Y. Liu et al. [121] propose that idle users harvest energy from the UAV 
and assist active users in computing tasks. By optimizing resource allocation and UAV trajectory, energy 
consumption is reduced while maintaining active users' task completion within tolerable latency. Moreover, the 
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near-far effect, wherein users farther from the UAV harvest less energy despite needing to communicate over longer 
distances, is mitigated by leveraging closer users as relays [122, 123]. This reduces the communication distance for 
farther users, saving transmission energy harvested from the UAV. 

 

In scenarios where UAVs themselves face battery limitations, EH modules can be deployed on UAVs to harvest 
energy from Ground Power Stations (GPS) or other sources [124, 125]. Y. Liu et al. [124] address service utility 
maximization by jointly optimizing UAV trajectory, computation offloading decisions, and offloading duration. 
They find that service utility initially increases sharply with GPS transmit power, enabling the UAV to adjust its 
trajectory to undertake more offloading tasks. However, once suboptimal offloading duration and UAV trajectory 
are achieved, further increases in harvested energy have minimal impact on service utility. 

 

Interestingly, UAVs can serve not only as information relays and MEC servers but also as energy relays to broadcast 
energy harvested from Access Points (AP) to User Equipments (UE). Y. Xu et al. [98] maximize the weighted sum 
of completed task-input bits of UEs by optimizing task allocation, UAV Wireless Power Transfer (WPT) power, 
offloading and execution time, and UAV trajectory using a three-step Block Coordinate Descent (BCD) algorithm. 
They find that UAV trajectory strongly depends on AP location, incentivizing the UAV to move closer to the AP to 
harvest more energy and reduce energy consumption for relaying task bits.  

 

Physical-Layer Security 

 

During the offloading process in aerial MEC systems, potential eavesdroppers may intercept communication 
information, posing risks to data security and privacy [126]. To mitigate such risks, physical-layer security 
technology is widely applied, ensuring confidential data transmission without secret keys. In [127], a physical-layer 
security model for aerial MEC is proposed, where an AP employing full-duplex technique acts as both receiver for 
offloaded tasks from a single UAV and a jamming source to interfere with eavesdroppers. This prevents 
eavesdroppers from decoding transmitted messages. Energy-efficient computation offloading schemes are proposed 
for active and passive eavesdroppers to minimize UAV energy consumption while meeting security requirements. 
Similarly, in [128] and [129], a full-duplex UAV server with dual antennas receives offloading task bits from ground 
users while simultaneously sending jamming signals to eavesdropper UAVs. Non-offloading users also send 
jamming signals to further enhance security. Optimization of security capacity considers UAV positions, transmit 
power of UAVs and users, task offloading ratio, and user association. Additionally, [130] maximizes secure 
computation efficiency through a two-stage alternative optimization algorithm, jointly optimizing UAV trajectory 
and ground users' transmit power. Notably, implementations of physical-layer security in these works rely on full-
duplex technique, where self-interference cancellation poses a challenge, as higher self-interference efficiency 
results in more residual self-interference power [129]. 

 

To overcome limitations of full-duplex technique, Y. Xu et al. [131] investigate security in aerial MEC systems with 
dual UAV deployment. One UAV assists ground users in computing tasks while the other acts as a jammer to 
suppress eavesdroppers. Minimum secure computing capacity is maximized for both Time Division Multiple Access 
(TDMA) and Non-Orthogonal Multiple Access (NOMA) schemes by optimizing communication and computation 
resources and UAV trajectories. Furthermore, [132] considers scenarios where an eavesdropper UAV intercepts 
offloading transmission from Mobile Devices (MDs) to computational AP without a jammer. Secrecy rates of 
offloading are derived, and the weighted sum of latency and energy consumption is minimized using Deep Q-
Network (DQN) techniques. 
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RIS 

 

In current aerial MEC optimization paradigms, the uncontrollable random radio environment is not typically 
considered in problem formulation. However, the concept of Reconfigurable Intelligent Surfaces (RIS) has recently 
emerged to construct smart radio environments. RIS consists of passive scattering elements, and by jointly 
controlling all scattering elements' phases, incident signal phases and angles can be tuned to add coherently and 
improve received signal power. RIS-assisted 

 

ML-Driven Optimization for Aerial MEC 

 

Traditionally, optimization for aerial Mobile Edge Computing (MEC) relies on methods like convex optimization, 
game theory, and heuristic algorithms. However, these methods often struggle with high dimensionality and require 
expert knowledge, making them less efficient for dynamic environments with numerous parameters. Machine 
Learning (ML) has emerged as a promising alternative, offering adaptive modeling and intelligent learning without 
manual intervention. ML algorithms can handle real-time decision-making in highly dynamic environments and 
large-scale networks with lower complexity. ML techniques encompass supervised learning, unsupervised learning, 
reinforcement learning (RL), deep learning (DL), deep reinforcement learning (DRL), and federated learning (FL) 
[6, 138]. Supervised and unsupervised learning are commonly used for computation offloading optimization, while 
RL, DRL, and FL are favored for resource allocation in aerial MEC systems [139, 140]. 

 

Reinforcement Learning 

 

RL is particularly effective for decision-making in uncertain and stochastic environments, modeling problems as 
Markov Decision Processes (MDPs) [142]. RL involves an agent interacting with an environment to learn optimal 
actions based on rewards and punishments [141]. RL has been applied to optimize computation offloading in various 
scenarios. For example, in [144], MEC server deployment is optimized using RL algorithms to maximize long-term 
payoff. Similarly, [145] models computation offloading management of multiple UAVs as an MDP, optimizing 
system parameters selection. Additionally, [146] uses RL to determine offloading data amounts from UAVs to MEC 
servers in a non-cooperative game setting. 

 

Q-learning is a popular RL technique and is widely used in the literature. For instance, [147] employs Q-learning to 
solve a dynamic pricing problem in edge computing services provided by UAVs. Similarly, [142] proposes a Q-
learning-based computation offloading algorithm (QCOA) for a Multi-User Edge-Cloud network architecture, 
reducing task completion time and energy consumption. Moreover, [149] and [150] utilize single-agent and multi-
agent Q-learning algorithms, respectively, to optimize UAV trajectory and task offloading ratio, and power and 
computation resource allocation for multi-UAV-enabled MEC networks. 

 

Deep Reinforcement Learning 

 

To overcome limitations of RL in large-scale systems with high-dimensional state and action spaces, Deep 
Reinforcement Learning (DRL) has been introduced, leveraging deep neural networks (DNNs) to expedite learning 
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processes [151, 152]. DRL employs DNNs to estimate associated functions, resulting in faster learning and 
increased efficiency for complex systems [153]. In the optimization of aerial MEC systems, DRL techniques have 
shown promise in achieving faster convergence and improved performance compared to traditional RL methods. 

 

In summary, ML-driven optimization techniques, including RL and DRL, offer efficient solutions for complex 
decision-making problems in aerial MEC systems. These techniques can adapt to dynamic environments and large-
scale networks, providing near-optimal solutions with lower complexity and faster learning speed. 

 

Open Problems and Future Directions 

 

Despite the promising potential of UAV-enabled aerial MEC systems, several open problems remain to be 
addressed. This section discusses research opportunities and identifies key directions that warrant further 
investigation. 

 

Space-Air-Ground Integrated MEC 

 

Integrating satellite networks with UAV-enabled aerial MEC systems presents numerous challenges and 
opportunities. While satellites offer broad coverage and can enhance edge computing capabilities, they also 
introduce propagation loss and delay issues. Recent advancements in Low Earth Orbit (LEO) satellites have made 
them more economically viable, with reduced propagation delays. However, continuous channel state changes and 
frequent handovers due to high mobility pose optimization challenges. Operating UAVs and satellites in 
heterogeneous networks requires comprehensive mechanisms for cooperative communication, resource allocation, 
and protocol design to realize the benefits of integrated MEC systems. 

 

Interference Management 

 

The LoS-dominant air-ground channels in aerial MEC systems provide reliable connectivity but also cause strong 
air-ground interference, particularly in densely populated UAV networks. Addressing this challenge requires new 
techniques tailored to the dynamic and complex nature of aerial MEC. Distributed interference management 
schemes, such as Mean Field Game (MFG) and Reinforcement Learning (RL), offer self-organizing capabilities and 
can efficiently mitigate interference. Advanced physical-layer techniques like directional antennas and Full 
Dimension MIMO (FD-MIMO) also contribute to interference mitigation. However, challenges such as LoS 
direction tracking and joint optimization of resource allocation and UAV trajectory need further investigation. 

 

ML-Driven Optimization for Aerial MEC 

 

While Machine Learning (ML) shows promise for optimizing aerial MEC systems, several issues require attention. 
Multi-agent Deep Reinforcement Learning (DRL) is a popular approach, but coordination among agents remains 
challenging, especially in highly dynamic environments with limited radio resources. Efficient communication 
protocols for multi-agent coordination are needed to address these challenges. Additionally, ensuring security and 
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privacy in information exchange among agents is crucial, requiring more efficient mechanisms for multi-agent 
learning. 

 

Security Protection and Privacy Preserving 

 

Security and privacy concerns in UAV-enabled aerial MEC systems demand robust solutions. Existing approaches 
address eavesdropping, DoS attacks, and trust evaluation, but challenges remain in ensuring secure data collection, 
validation, and storage. Lightweight authentication schemes and blockchain technology offer potential solutions, but 
comprehensive security mechanisms are needed to protect against diverse threats such as sensor spoofing and sleep 
deprivation attacks. Future research should focus on forecasting, protecting, and recovering aerial MEC systems 
from various security threats. 

 

Wireless Charging for UAVs 

 

Despite their appealing features, UAVs are constrained by limited onboard energy, typically resulting in short flight 
times. While battery swapping offers one solution, it can be time-consuming and disruptive. To address this, 
wireless charging technology for UAVs has garnered significant research attention. For example, Ansari et al. 
propose a novel architecture using free space optics (FSO) for energy and data transfer via laser beams. 
Additionally, for laser-powered UAVs with energy harvesting constraints, studies have investigated joint 
optimization of UAV trajectory and transmit power. Furthermore, UAVs equipped with sensors and photovoltaic 
(PV) cells can harvest solar energy, though the impact of PV cell area on charging performance requires 
investigation. However, practical deployment considerations such as atmospheric conditions and turbulence pose 
challenges that warrant further exploration. 

 

Cache-Enabled Aerial MEC 

 

Wireless caching, which proactively stores popular content at access points or storage devices, offers reduced 
content acquisition latency and alleviated network backhaul burdens. When integrated into aerial MEC, caching 
presents opportunities for performance enhancement, such as providing content to ground users and improving 
computing latency. However, challenges remain, including designing caching mechanisms to balance content 
popularity and finite storage capacity, and optimizing resource allocation considering communication, computing, 
and caching components along with UAV trajectory design. Addressing these challenges requires intensive research 
efforts. 

 

Integration with Recent Promising Techniques 

 

Advanced techniques such as radio-based sensing, Reconfigurable Intelligent Surfaces (RIS), and edge intelligence 
have emerged to support next-generation communications. While these techniques offer benefits such as privacy-
preserving object detection and reduced latency, their direct applicability to aerial MEC systems is hindered by 
UAVs' unique features and operating environments. For example, the continually moving nature of UAVs may 
affect the effectiveness of RIS passive beamforming. Integrating these techniques into aerial MEC systems presents 
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opportunities but also requires careful consideration of new challenges and potential benefits. While some research 
efforts have begun, further investigations are needed to fully exploit the potential benefits of these techniques in 
aerial MEC systems. 

 

Conclusion 

 

UAV-enabled aerial Mobile Edge Computing (MEC) holds immense promise for delivering ubiquitous and 
reliable MEC services across current and future wireless networks. However, realizing this potential 
requires ongoing efforts from both academia and industry. In this paper, we conducted a 
comprehensive survey of the research progress in aerial MEC. 

 

We began by providing an overview of aerial MEC, covering network architecture and potential 
challenges. Next, we delved into the joint optimization of UAV trajectory, computation offloading, and 
resource allocation, considering UAVs' stringent Size, Weight, and Power (SWaP) constraints and 
controllable maneuverability. 

 

We then reviewed strategies for UAV deployment, task scheduling, and load balancing, aimed at 
meeting users' dynamic requirements while minimizing deployment costs. Additionally, we explored the 
interplay between aerial MEC and other technologies like Wireless Power Transfer (WPT), Physical Layer 
Security (PLS), and Reconfigurable Intelligent Surfaces (RIS). 

 

Furthermore, we highlighted the significant potential of Machine Learning (ML) in addressing complex 
control and resource allocation challenges in dynamic environments, discussing recent progress in ML-
driven optimization for aerial MEC. 

 

Lastly, we identified open problems and future directions in aerial MEC, including space-air-ground 
integrated MEC, interference management, ML-driven optimization, security protection, privacy 
preservation, wireless charging for UAVs, and cache-enabled aerial MEC. Additionally, we discussed the 
integration of aerial MEC with promising techniques such as radio-based sensing, RIS, and edge 
intelligence. 

 

In summary, while UAV-enabled aerial MEC presents exciting opportunities, addressing its challenges 
and realizing its full potential will require continued collaboration and innovation across various 
domains. 
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